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Abstract: Denote by G(€,m), the Grassmannian of £-dimensional subspaces of a m-dimensional vector space F,™ over the finite field
Fy and Q¢ (¢,m), the Schubest subvaricties of G(€,m). A linear [n,k]4- code is a k-dimensional subspace of the n-dimensional vector
Space Fg. In this paper, we consider the problem of determining generalized spectrum of linear codes associated to Schubert subvarieties .
of Grassmannians. ‘We make a small begining here by detremining the seond generalized spectrum (i.e. second weight distribution) of
Schubert codes associated to Schubert subvarieties of G(€,m) over F; in case of =2 and m = 5.
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1 Introduction

In [13], Victor Wei introduced the notion of weight hierarchy of a linear code, motivated by applications in type II
wire-tap channel in cryptography. Wei-defined the r-th generalized Hamming weight of a linear code as the minimum
support weight of any of its ~-dimensional subcode. For a class of Algebraic-geometric cpdes the generalized Hamming
weights were investigated by a number of researchers such as Tsfasmann-Vlidut [12], Nogin [8], Ghorpade-Lachaud [1],
Ghorpade-Tsfasman [2], Hirshfeld-Tsfasman-VIaduf [7], Ghorpade-Patil-Pillai [3].

Generalized Hamming weights proved to be of great applications in coding theory to study the structure of a code. It is
therefore natural toconsider an extension of the notion of generalized weights-the generalized spectra of linear codes.
The problem of determining the generalized spectra of a linear [, k], code is first studied by Klove in [4] and {5]. In [4],
he gave a MacWilliams identity for the support weight distribution of linear codes called the generalized MacWilliams
identity. In [5], he determined the weight enumerator polynomial (also called support weight distribution function) for
irreducible cyclic codes.

In [3], the problem of determining generalized spectrum for another class of linear codes arising from higher
dimensional projective varieties namely Grassmannians varieties is studied.

. In this paper, we investigate the problem of determining the generalized spectrum of code associated with Schubert

subvarieties of Grassmannians G(2,5) over F,.

1.1 Qutline of the paper

This paper is organized as follows. In section 2, we recall the basic definitions and properties of the linear code which

- are useful for the rest of the work. In section 3, we define the projective system and give the correspondence between

codes and projective system. we briefly describe the codes associated with Grassmannians and Schubert subvarieties
of Grassmannians. Finally, in section 4, we determine the generator matrix for the code associated with every Scubert
subvariety of G(2,5) over IF; and give the generalized spectrum of these codes.

* Corresponding author e-mail: maheshwavare@gmail.com © 2019 BISKA Bilisim Technology



2 BISKA M. S. Wavare: Codes associated to Schubert varieties in G(2, S) over Fa

2 Linear Codes

2.1 Basic definitions

Let ¥, denote the finite field with ¢ elements, ¢ = p", p a prime and denote by F," the n-dimensional vector space over

F,. For any x € ", the support of x, supp(x), is the set of nonzero entries in x = (x.x2,--- ,x,). The support weight (or
Hamming norm) of x is defined by,

{xl = lsupp(x)|.
More generally, if D is a subspace of ¥, the support of D. Supp(D) is the set of positions where not all the vectors in D
are zero and the support weight (ot Hamming norm) of D is defined by,

[|Dl] = lsupp(D)|.

A linear [n,k]4-code is a k-dimensional subspace of Fg. The parameters n and k are referred to as the length and dimension
of the corresponding code. The minimum distance d = d(C) of C is defined by

d = d(C) = min{||x}| :x € C,x# 0}
More genérally, given any posifive integer r, the rth higher weight d, = d,(C) is defined by

d, = d,(C) =min{||D|| : D is a subspace of C with dimD =r}.

Note that d{(C) = d(C). It also follows that d; < dj when i < j and that d; = |supp(C)|, where & is dimension of code
C. Thus we have 1 <d} =d < d> < --- < dy_1 < d;. = n. The first weight d; is equal to the minimum distance and
the last weight is equal to the length of the code. An [r,k],-code is said to be nondegenerate if it is not contained in a
coordinate hyperplane of Fy. Two [n,k]4~codes are said to be equivalent if one can be obtained from another by permuting
coordinates and multying them by nonzero elements of Fy. It is clear that this gives a natural equivalence relation on
the set of (n,k|g-codes. The (usual) spectrum (or weight distribution) of a code C C Ty is the sequence {Ao,41,--- ,4n}
defined by '

Ai=A4/(C) ={c € C: ||| # O}.

More generally,the rth higher weight spectrum (or rth support weight distribution) of a code C is the sequence
{45,475, 4} defined by
Al =|{DCC:dimD=r||D|| =i}| (1)

This naturally allows us to define rth support weight distribution function (or rth weight enumerator) as
AT(Z)=AG+AZ+---+A"2" )
Hence for each 0 < r < k, we have a weight enumerator. We can also define the rth higher weight as
d,(Cj) =min{i:Aj # 0}.
Note that 4°(Z) = 1. Also note that if x € F7, then

[l = 1{H =11 {Ax: 2 €F }H|.

Lemma 1. If'C is a code with dimension k over F; then for Z = 1

= [t] @
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where | =Sy which is the number of subspaces of dimension r in « k dimensional space.
r & e o =2 - - .
4 2

2.2 Dual codes

The standard inner product on ¥y is defined by < x,y >:= 3L xivi.

Definition 1. The Dual of a code C C IFZ is the code
Ct:={xeF):<x.c>=0foraliccFy}.

Let B”(Z) be the rth support weight distribution function of the dual code C +_In [4] Klove gave the MacWilliams identity
for the generalized spectrum of code C and its dual C*,

Theorem 1. [Generalized MacWilliams Identity] For all m > 0 we have
3 (B (2) = 1+ (g - )2 S A (_"Z_> ,
=0 . = I+(g" =1z
where [m], = (¢" —1)(@" ~q)(@" - ¢*)---(¢" - ¢'").

The numiber [m], is known as the number of the ordered linear independent r-elements in the m-dimensional space. For
r = 1, we can write'the MacWilliams identity for usual spectrum in the following theorem. -

. Theorem 2.

¢

An alternative way to describe codes is via the language of projective systems introduced in {12]. Let P¥~! be a projective
space of dimension k— I over Fy. A [n, k]g-projective system is a (multi)set X of n points in the projective space P! over
F,. We call X nondegenerate if these n points are not contained in any hyperplane of P*~!. Two [n, k]4-projective systems
are said to be equivalent if one can be obtained from another by a projective transformation. For any positive integer r, the
rth higher weight of a projective system X is defined by

d- =d.(X) = n — max { |X N IT| : IT is a subspace of P*~! of codimension r} .
Th; g-eneralized spectrum of a projective system X is defined by,
A = AT(X) =| {ﬁg Pl X1 = n— . codimT = r}|
foralli=1,2,---.n,r =1,2,---k— 2. It can be proved that 4] = A7(C) = A7(X).
For any [n, kjs-linear code C, one can construct corresponding [n,k],-projective system in the following way: Consider

coordinate forms x; : C — F, such that
Xi 2 (Viyooe 4 Vi) 2 Vi

These forms can be considered as n points of the space C* of linear functions on C (the dual linear space). If C is
nondegenerate, that is, all forms x; are nonzero as functions on C, then they define n points in P*~! = p(C*), or a
projectivc system.
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A subcode D < C of dimension 7 correspond to the set of elements of C* vanishing on D. that is, to the subspace D” C C*
of codimension r and. therefore, to a subspace of codimension r in P*~!. The weight of a subcode D equals to the
number of coordinate forms not vanishing on it, that is, the number of points of X not lying on this subspace of
codimension r. On the other hand, now we show how one can construct a linear code for a nondegenerate projective
system. Given a projective system X = {P.P.--- .pu} C X1 = P(V). we lift it to a system {y.y2.--- ,yn} of vectors
in V. Any y; defines a mapping V* — ¥,, and the set (v;.)3,---.v,) defines the mapping V* — F,", given by
(vi-va,---ve) = Or1(v),02(v).--- ,ya(v)) whose image is some linear code. Moreover it is an [n,kjs-code if the
projective system is nondegenerate.

The above correlation provides the proof for the following theorem (see [12]).

Theorem 3. There is a one-to-one correspondence between the set of the equivalence classes of nondegenerate
[n,k]g-projective systems and the set of the equivalence classes of nondegenerate linear [n,k|s-codes. This
correspondence preserves the parameters n .k and the higher weights d — 1,d3,--- ,dy.

The above correspondence in terms of generator matrix can be viewed as follows: Let G is a generator matrix for a
[n.4]4-linear code C, and let g;.g2,--- .8 € I[" be the columns of G. Suppose that none of the g;’s is the zero vector.
lhen each g; determines a point [g,] in the projective space P¥=! = }P(]F k) If these g; are pairwise independent, then

:={[g1],g2],-- - »[ga]} is a set of n points in P*~!. This will be the corresponding projective system. Thus the n columns
of G determines a projective system X. Vice versa, If X is a projective system, then a generator matrix for C is the k x n

" matrix whose columns are the representatives of points in projective system X.

3.1 Codes from Grassmannians

The Grassmannians G (¢,m) is the set of £-dimensional subspaces of an m-dimensional veclor space ¥V over [F,. Wc have
the well-known Pliicker embedding of the Grassmannian into a projective space (cf. [y, and this cmbeddmo is known
to be nondegenerate. Considering the F4-rational points of G (£,m) as a projective system, we obtain a g-ary linear code,
called the Grassmann code, which we denote by C(€,m). These codes were first studied by Ryan [10,11] in the binary
case and by Nogin [8] and Ghorpade and Lachaud [1] in the g-ary case. It is clear that the length n and the dimension k of

C (€, m) are given by,
_[m] _@=D"-a)-~-g") | _
"“[1],, gy == (%) - W

The higher weights of (2, m) is given by the following elegant formula due to Hansen-Johnsen-Ranestad {6] and Ghorpade-
Patil-Pillai [3].

Theorem 4. For pt = max(£,m—€) + 1,

dps 1 (C(2,m)) =¢® 4+ g% 4. goHHL @)

and
Gy (C2,m)) =n— (1 +g+--+ g4 447 3)
3.2 Codes from Schubert varieties

Ghorpade and Lachaud in [1] proposed the generalization of Grassmann codes as Schubert codes. The Schubert codes are
indexed by the elements of the set

I(l.m) = {ot= (2.0, ,0¢) EZ:1 < oy <--- < Qg < m}.
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Given any a € I(£.m}, the corresponding Schubert code is denoted by Cq(f.m), and it is the code obtained from the
projective system defined by the Schubert variety Qg in G{/.m) with a nondegenerate embedding induced by the Pliicker
embedding. We define Qg as

Qo ={W e G{t.m) :dm(W 1 dy,) > i fori=1.2.--- .(}.

where 4; denotes the span of the first j vectors in a fixed basis of V', for | < j < m. Ghorpade and Tsfasman in {2],
determined the length n, and dimension kg of Cy (£.m). It was conjectured by Ghorpade in [1], that

d(Calt.m)) = qa" 4)

p (74
where 8 :=)_’_f___,(a,——1)=ot|+az+-~-+ag—“2”.

The complete weight hierarchy and second support weight distribution of codes associated with all Schubert subvarieties
of G(2.4) is known due to Patil ([9]). In Next section, we give the second support weight distribution of all the codes
associated with Schubert subvarieties of Grassmannians G(2.5) over F.

4 Codes associated with Schubert varieties in G(2,5) over I,

Let /(2,5) be an indexing set defined by,
1(2,5) == {(1,2).(1.,3),(1,4),(1,5).(2:3),(2,4).(2.5),(3.4).(3.5).(4,5)}
Now by definition given any o G I (f,:n), the Schubert variety i§ defined by, 7
Qq:={PeG(t.m):pg=0 YV B#a}.
We consid;:r Schubert varieties for eaqh o above and the codes associated with them.
(I) Code associated with the Schubert variety for o = (2,4):

By definition,
: Qz.4) = {P € G(2,5) : p15s = p2a = pas = p3a = p3s = pas = 0}.
Dimension of £2(3 4) = &4 = 8, where 84 =2+4 -3 = 3. Now

P € G(2,5) = P = (P12, 13: P14: P15: P23, P24: P25 P34+ P35, Pas) € G(2,5) — P,

So, .
Pe 9(2,4) =P= (PIZ,PB:PM:O:PZS:PZM010,010)-

The projective system consists of IF,-rational points of £(; 4). The number of rational points on £2(3.4)is given by,

n= Z q83 =21+2—3+2]+3-3+21+4—3+22+3—3+22+4—3',_:'l+2+4+4+8: 19.
B<a

These points are listed below:
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P, =11.0.0,0.0.0,0,0,0.0) P ={0.1.0.0.i.0,0.0.0.0; Pys=:1.0.1.0.0.1.0.0.0.0)

(1.0.0.0.1.1,0.0,0.0)
Py = (0.0.1.0.0.0.0.0,0.0) Pio=(0.1.1.0.1.1.0.0.0.0) £;7={1.0.0.0.0.1.0.0.0.0)
Py =(0.0,0.0.1.0,0.0,0,0) Ay =(1.1.1.0.0.0.0,0.0.0j P =1{1.0,0.0.1.0,0,0.0.0)
Ps=(0.0,0,0.0.1,0.0,0,0) P>=(1.1.1.0.1.1.0.0.0.0) Py =(1.0.1.0,0.0,0.0.0,0)

A

P»=(0.1.0.0,0.0.0.0,0.0) Py =(0,1.1.0.0.0,0.0.0.0) Pie=

P5=1{0.0,0.0.1,1,0,0,0.0) P5=(1.1.0.0.1.0.0.0.0.0)
Py =(0,0.1,0,0.1,0,0.0,0) Pq=(1.1.0,0.0,0.0,0.0.0)

dim(C) =#{B: B <(2.4)} =#{(1.2).(1.3).(1.4).(2.3).(2.4)} = 5length(C) = Number of F» — rational points = 19.

Thus the generator matrix for C is of order 5 x 19 which is given by,

i1¢c000000C0D01121111111
0100000111131 1100000
00100010111106010001
0001010101011001010
0000111001061 0011100
We have the following theorem on second higher spectrum for these codes.
Theorem 5. 4%, =6; 4}, =90, Al;=57; A};=2. A}=0, (otherwise.)
we have also verified these calculations with the following formula,
", 5] 31x30.
- A= | ==—=155. .
: ,-;o ! {2}2 3x2 .
(I1) Code associated with the Schubert variety for a = (2,5): . .

By definition, ) )
Qz5)=4{P € G(2.5) : p3a = p35 = pss = 0}.
Dimension of 2, 5; = 85 = 4, where 8,5 =2+ 5-3=4.
Thus,
P € Q35y = P=(p12,P13: P14, P15, P23: P24.P25,0.0.0) .

The projective system of £, 5) consists of [F2-rational points on €2, 5). The number of these rational points are given by,

n= 2 qsﬁ =2l+2—3+21+3—3+2[+4—3+22+3—3+22+4—3= 142+4+4+448=19.

B<a

These points are listed in the following matrix in columns.

00000O0COO0OOOOO 00 00
171

OO0 0O OO
oo oo -
o oo r o

o oo+ oo
o+ o oo
H oo oo
ocoooo
- o 0o o
o+ o oo
R -R--)

R ==
oo+ oo

oOr oo~ O
oo+ FOO
HorROo
or oo -

cocororOo

oo o o~
o+ M

- o - OO
H - O RO
T S S A -

[T S ST ST S

OO0 O0O MK
H RO e
Q- H O K
O OO R KR
CoOo - O MK
OO0 0o HR
H OB o=
- oo o R

00 0061110 1 010 0 01 0

O OO KR K
Hoor oor
=2 O OO O+

100011

O OO O

1

O H OO o+
O P O OO

OO0 O+ O+

1

OO O O O+

= O O o O

0

OO OO O K

Note that this is the generator matrix for code associated with €, s). Its dimension is 7 and length is 43. Thus, we have

the following theorem on second higher spectra of these codes.

Theorem 6.

A3 =28; A% =126, Aly=672; 4%, =315 A% =1344; A% =182, A% =0;(otherwise.)
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we have also verified these calculations with the following formula,

a 71 127x126
Y a2= ] =2 X2 a6,
pard 21, 3x2
That is, A3+ A3+ A3g + A3 + 43, + A% =2667
28+ 1264672+ 315 4 1344 4 182 =2667
2667 =2667.

(11I) Code associated with the Schubert variety for a = (3.4):
By definition,
Qiz.4y={P € G(2,5) : p55 = pas = 0}.

Dimension of Q(3 4y = &34 = 4, where 834 =3+ 4 — 3 =4. Thus,
PE€ Qx4 = P=(p12:p13:714,0, 23,5240, p34,0,0).

The projective system of (3 4y consists of [F,-rational points on €23 4). The number of these rational points are given by,

n= Y g% =35

B<a

These points are listed in the following matrix in columns.

1000000000000000000©111111111°111111
0100000000000111111111111111000000090
00100000001110161011111100¢6011100001
000100011'100010001110011101011010710
0+000101101011200060011010112%0019011100
0000011011101001110101101100110000°0

Note that this is the generator matrix for code associated with £(3 4). Its dimension is 6 and length is 35. Hence, we have
the following theorem.

Theorem 7.
A3, =105; A%, =1280, A%;=210; A%, =56, A%=0; (otherwise.)

we have also verified these calculations with the following formula,
Y2 = [g} = 6:; :gz =651
i=0 2 : .
That is, A2, + A3 + A5 + A3, = 651
105 + 280 +210 + 56 = 651
651 = 651.

(IV) Code associated with the Schubert variety for a = (3,5):
By definition,

. 9(3:5) = {PE G(Z.S) IP4s = 0} .
Dimension of €3 4) = 85 = 4, where &5 = 3 + 5 —3 =5. Thus,

P € Q3.5) = P = (P12:P13: P14, P15, P23 P24, P25, P34, P35, 0) .
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The projective system of €2;; 5. consists of F-rational points on Q.5 5;. The number of these rational points are given by.

n= Zq‘iﬂ =9I.
B<ua

Note that the generator matrix for code associated with 5 5, is of order 9 x 91. Its dimension is 9 and length is 91. Hence,
we have the following theorem for these codes.

Theorem 8.
A% =28, A3 =630. Azy=1792; AZ, =7539, A% =16128; A3, =17318. A?=0; (otherwise.)

we have also verified these calculations with the following formula,

2o 0] SSxsio_
g;, lz— Ix2 ’
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